任何一道应用题都由两部分构成,第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。
01
归一问题
【含义】
在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】
总量÷份数=1份数量
1份数量×所占份数=所求几份的数量
另一总量÷(总量÷份数)=所求份数
02
解题思路和方法
先求出单一量,以单一量为标准,求出所要求的数量。
例1:
3头牛4天吃了24千克的草料,照这样计算5头牛6天吃草 _____ 千克。
解:
1、根据题意先算出1头牛1天吃草料的质量:24÷3÷4=2(千克)。
2、那么5头牛一天吃2×5=10(千克)的草料。
3、那么6天就能吃10×6=60(千克)草料。
例2:
5名同学8分钟制作了240张正方形纸片。
如果每人每分钟制作的数量相同,并且又来了2位同学,那么再过15分钟他们又能做 _____ 张正方形纸片?
解:
1、可以先算出5名同学1分钟能制作正方形纸片的数量,240÷8=30(张)。
2、再算出1名同学1分钟制作的数量,30÷5=6(张)。
3、现在有5 2=7(名)同学,每人每分钟做6张,要做15分钟,那么他们能做7×6×15=630(张)正方形纸片。
例3:
某车间用4台车床5小时生产零件600个,照这样计算,增加3台同样的车床后,如果要生产6300个零件,需要 _____ 小时完成?
解:
1、4台车床5小时生产零件600个,则每台车床每小时生产零件600÷4÷5=30(个)。
2、增加3台同样的车床,也就是4 3=7(台)车床,7台车床每小时生产零件7×30=210(个)。
3、如果生产6300个零件,需要6300÷210=30(小时)完成。