(5)全微分方程:若存在二元函数u(x,y),使du(x,y)=P(x,y)dx Q(x,y)dy,则称微分方程
P(x,y)dx Q(x,y)dy=0为全微分方程,它的通解为u(x,y)=C.
从上述总结的一阶微分方程的种类及解法可以看出,这类题目的题型多变,同学们需要强化记忆理解相关概念,注意区分,对不同类型的题目采取相对应的解法。
(6)可降阶的高阶微分方程
题型一:可降阶且不显y的微分方程
例1:(2007年考研真题)
分析:本题是可降阶且不显y的微分方程,可以通过令p=y',把原方程化解程一阶线性微分方程。
解: