考研数学,在硕士研究生考试中是一门技巧性较强的公共科目。所以,在历年都会出现两种情况:要么难以入门、分数极低,要么驾轻就熟、分数极高。出现这样的情况,是对解题思路掌握情况的不同造成的。下面,介绍一些考研数学的解题题技巧,供参考。
高等数学
1.在题设条件中给出一个函数f(x)二阶和二阶以上可导,那我们就应该立刻想到把f(x)在指定点展成泰勒公式再说。
2.在题设条件或欲证结论中有定积分表达式时,则先用积分中值定理对该积分式处理一下再说。
3.在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则先用拉格朗日中值定理处理一下再说。
4.对定限或变限积分,若被积函数或其主要部分为复合函数,则先做变量替换使之成为简单形式f(u)再说。
线性代数
1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E 。
2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
3.若题设n阶方阵A满足f(A)=0,要证aA bE可逆,则先分解出因子aA bE再说。
4.若要证明一组向量a1,a2,„,as线性无关,先考虑用定义再说。
5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。
6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。
7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。
8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。
概率论
1.如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式 。
2.若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式 。
3.若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组。
4.若题设中给出随机变量X ~ N 则马上联想到标准化 ~ N(0,1)来处理有关问题。
5.求二维随机变量(X,Y)的边缘分布密度 的问题,应该马上联想到先画出使联合分布密度 的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,求法类似。
6.欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联想到二重积分 的计算,其积分域D是由联合密度的平面区域及满足Y≥g(X)或(Y≤g(X))的区域的公共部分。
其实,考研数学的解题题技巧还有很多,大家在做题的时一定要把握规律、善于总结,形成自己的解题思路。你有什么解题技巧,欢迎留言分享。
关注领取电子打印版。>>>更多干货内容: