物理和数学本来就是相辅相成的,扎实的数学功底对物理的提升是相当大的。数学中的微积分对于解决物理问题有其先天优势。2016年物理竞赛大纲中明确要求了微积分初步及其应用,那么学习微积分最重要的是理解其思想,其次是计算。本文诣在用通俗易懂的语言、生动形象的例子帮助高中生理解、掌握微积分,并且会进行简单的计算。
微积分的思想两大基础是:函数、极限
一、函数
1.1 数学上函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。
那么在物理学领域对应的函数概念是什么呢?
物理学中,在课本上经常看到一些物理公式、解题时经常列一些方程等等,其本质就是函数。数学上,函数可以描述x和y之间的关系;同理,物理上的公式(方程)也可以描述两个物理量之间的关系。
例如:
其实物理公式(方程)本质就是就是函数,用来描述物理量之间的关系;首先我们要扭转一个观念,我们在平常解题的习惯中认为方程是针对的某一时刻、某一点或者某个状态,那是狭义的。方程本来是描述的整个物理过程(特殊情况除外),只有带入具体数据时,才是描述的某一个特定点或状态。
例如:在下图中,函数都是描述的一条直线,而不是一个点。
1.2 函数概念理解之后,我们来看积分对象:微分方程
如果想使用微积分解决问题,首先要列出微分方程,然后对微分方程进行积分。
那什么是微分方程呢?
我们之前说过,方程的本质就是函数,数学上定义微分方程:指含有未知函数及其导数的关系式。物理上就是含有微分变量的方程(也可以理解为含有微分变量的函数)。
例如 速度:dx=vdt
物理角度:无限小的一段位移dx,我们可以认为是匀速运动,经过很短的时间dt,对应的速度就是v。数学角度:x是关于时间的t的函数,等式左边对因变量x求导,等式右边对自变量t求导。另外,dx=vdt可以表示整个物理过程中的速度,当题中已知速度关于时间的具体表达式时,我们就可以对其进行积分求解,进而求出位移x关于时间t的表达式。
同理加速度:dv=adt
二、极限
2.1 数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”。
例如函数:y=arctanx,逐渐逼近π/2,但是又不等于π/2。