费马点的定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。
它是这样确定的:
1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;
2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。
费马点的性质:费马点有如下主要性质:
1.费马点到三角形三个顶点距离之和最小。
2.费马点连接三顶点所成的三夹角皆为120°。
费马点最小值快速求解:
费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.
秘诀:以△ABC任意一边为边向外作等边三角形,这条边所对两顶点的距离即为最小值