关注风云之声
提升思维层次
导读张益唐不但留下了一个“始不垂翅,终能奋翼”的传奇,而且他的宠辱不惊也耐人寻味。各界人士对他的热情帮助,以及他成名后对社会的热情反馈,都充满了人性的光辉。正如《论语》里的名言:“一箪食,一瓢饮,在陋巷,人不堪其忧,回也不改其乐。贤哉,回也!”
注:风云之声内容可以通过语音播放啦!读者们可下载讯飞有声APP,听公众号,查找“风云之声”,即可在线收听~
双十一刚过,许多人是不是正处在剁手后的吃土时间?今天,我们就来介绍一位吃土界的宗师级人物。他倒不是买了太多东西,而是在很长时间内根本没钱买东西。但与众不同的是,他在各种艰难困苦的条件下,都一直在研究世界难题,最后终于石破天惊。他就是传奇数学家张益唐。
张益唐
张益唐做了什么呢?回答非常有意思。
数学家的成果往往很难向大众介绍,因为仅仅听懂他们在研究什么问题都需要很多背景知识。而且张益唐是当代人,一般而言,越往后的就离普通人越远。然而,张益唐却是个大大的反例,他的研究成果是很容易解释的。容易到什么程度呢?小学水平就够了!
首先,大家都知道什么是质数(prime number),对吧?质数就是只能被1和自己整除的自然数,也被称为素数。能被1和自己之外的数整除的自然数,叫做合数(composite number)。
最小的质数是2,下一个是3,然后是5,然后是7。显然,2以外的质数都只能是奇数。我们沿着奇数一路看下去。
下一个奇数9不是质数,因为它等于3 × 3。下面两个奇数11和13,又是质数。下一个奇数15不是质数,它等于3 × 5。再下面两个奇数17和19,又是质数。下一个奇数21不是质数,它等于3 × 7。下一个奇数23,又是质数。再下面两个奇数25和27不是质数,它们等于5 × 5和3 × 3 × 3。再下面两个奇数29和31,又是质数。如此等等。
100以内的质数和合数表
我们可以观察到什么现象呢?
一开始,质数十分密集,但后面变得越来越稀疏。这是因为数越大,可能的分解方式就越多,它成为质数的几率就越低。
这就引出了一个基本问题:质数的数目是有限还是无限呢?也就是说,会不会到了某个数以上,就全都是合数,再也没有质数了?
对此我们有明确的答案:质数有无穷多个。这是欧几里得在《几何原本》中证明的。这个证明非常经典,而且一点都不难,你能想到吗?我们会单独录一个视频,来证明质数有无穷多个。
然后,另一个观察是,有些质数之间只相差2,例如3和5、5和7、11和13、17和19、29和31。我们把这样的一对质数称为“孪生质数”(twin primes)。显然,随着质数变得越来越稀疏,孪生质数也会变得越来越稀疏。
例如23周围就没有孪生质数,因为21和25都不是质数。23是第一个单独出现的质数,而在后面的质数中,单独出现的几率会越来越高,孪生出现的几率会越来越低。
所以,一个自然的问题就是:孪生质数对的数目是有限还是无限呢?也就是说,会不会到了某个数以上,就全都是合数或者单独出现的质数,再也没有孪生质数了?
这个问题小学生都能理解,但答案我们还不知道。数论的一大特点,就是一个普通人提出的问题,无数聪明人奋斗几千年都不一定能解答。
目前,我们已知的最大的孪生质数对是:
3756801695685× 2666669 - 1和3756801695685 × 2666669 1。
这两个数用十进制表示,长度有20多万位!
一个合理的感觉是:随着数的增大,孪生质数出现得越来越稀疏,但永远不会消失,它们总会倔强地在某个地方再次出现。绝大多数数学家都相信这个命题,但谁也不能证明或证伪它。
这个命题叫做“孪生质数猜想”(twin prime conjecture),是整个数学中最著名的未解之谜之一。1900年,德国数学大师希尔伯特(David Hilbert,1862 - 1943)提出了指导二十世纪数学发展的23个问题,其中孪生质数猜想、哥德巴赫猜想(Goldbach’s conjecture)和黎曼猜想(Riemann hypothesis)被打包作为第八个问题,统称为关于质数分布的问题。
希尔伯特
从1900年到现在,119年过去了,这三个猜想仍然没有解决。不过在孪生质数猜想方面,我们取得了重大的进展。这个进展就来自张益唐。
2013年,他证明了:存在无穷多对质数,它们的间隔小于7千万。
这意味着什么呢?
在此之前,我们不但无法证明有无穷多对只相差2的质数,而且把这里的2替换成任何一个有限数值,我们也无法证明。也就是说,我们不能排除这种可能:任给一个自然数N,间隔小于N的质数对都只有有限个。而现在,我们就可以排除这种可能了。
所以,张益唐把对质数间隔的估计,从无限一下子拉到了7千万!如果拉到2,就是证明了孪生质数猜想。虽然我们还没有做到这一点,但很容易理解,从无限到有限是质的区别,而从7千万到2只是量的区别。因此,张益唐的定理是人类在孪生质数猜想上第一个真正重大的突破。
张益唐的人生,跟他的成果一样富有戏剧性。他是我所知的大器晚成的最惊人的例子。
1955年,张益唐出生于上海。他的父亲是中国最早研究移动通信的专家之一,母亲在邮电部工作。张益唐从小就对数学显露出超常的兴趣和天赋,但由于时代的捉弄,不能上大学,只能在北京制锁厂当工人。
恢复高考后,1978年,23岁的张益唐考上了北京大学数学系。虽然年龄偏大,但是金子总会发光的。张益唐的数学才能,在同学中大放异彩。
我的前辈朋友、著名作家王小东,跟张益唐就是北大数学系的同班同学,而且是铁哥们。王小东告诉我,他原本对自己的数学天赋很有自信,见到张益唐之后就明白了,纯数学还是让张益唐这样的人去搞吧。他们系还有人后来成为了成功的企业家,他也感谢张益唐。感谢什么呢?感谢让他早早打消了作数学家的想法,找到了适合自己的道路。
1982年,张益唐本科毕业后,跟随著名数学家潘承彪读硕士。1985年,在北京大学校长、著名数学家丁石孙的推荐下,到美国普渡大学读博士,导师是来自台湾的莫宗坚。这一段经历看起来一帆风顺,但出人意料的转折马上来到。