图源:网络|图解:地球周边的红色就是地球散逸的氢气,白色的光圈是氧气、氮气和其他气体
地球并不是唯一经历大气逃逸的行星,距离地球最近的火星邻居比地球的体积要小很多,意味着火星维持大气层的引力也比地球小很多。虽然火星也有一层非常稀薄的大气层,或许我们看不到它的存在,相对地球的大气层而言,火星的大气层实在是太过于稀薄了。我们可以清晰地看到火星的地表和火山口以及一些凹凸不平陨石坑,陨石坑遗迹向我们披露了火星没有浓厚的大气层阻止来自外太空的天体撞击。
火星呈现的颜色是红色,大气逃逸是导致火星变成一颗红色荒芜且表面凹凸不平的行星的主要原因,火星在演化成红色的过程中大气逃逸占据了主要原因,其次的原因是氧气。
种种迹象表明火星过去的环境是比较湿润的,拥有大量的液态水,当液态水被太阳光照射后就会蒸发,在蒸发的同时会分解成氢气和氧气。氢气是很轻的,这就意味着它会逃逸到星际空间中去,而氧气较为偏重,只有一小部分会逃逸到星际空间,绝大部分的氧气则会下降到火星的地表最终氧化生锈,因此火星地表就变成了锈迹斑斑我们所看到的那种熟悉颜色——锈红色,这一点就足以证明火星的大气逃逸的确是发生过的。
图源:pixabay|图解:蓝色圈层是火星大气层,由于氧化生锈的作用火星表面呈现出红色
Mavens卫星是一个研究“火星大气与挥发物演化”的航天器,它的主要任务就是研究大气逃逸以及由此产生的结果。从Mavens卫星传回的图片与我们在地球上看到的火星景象非常类似。火星一直在挥发大气,这个过程可能持续了数十亿年,直至目前火星仅存的稀薄大气也还在继续挥发。
举例说明:
图片中展示的红色圆圈是火星的轮廓,蓝色圆圈就是从火星上逃逸的氢气。
蓝色圆圈甚至已经延伸到火星自身球体十倍多的距离之外,如此足够远的距离足以使氢气不再束缚于火星的引力,于是氢气就会随着太阳热量的波动而逃逸到星际空间中,这一点更加有助于科学家验证火星是通过氢气的逃逸而变成红色的这一个观点。
火星上逃逸的气体除了绝大部分是氢气以外,当中还包括了少量的氦气、氧气和氮气。由于氧气的比重较重,并不会像氢气逃逸得那么远,因此我们看到从火星逃逸的氧气全部被限制在那个红圈里。
图源:网络|图解:红色圆圈是火星的轮廓,蓝色圆圈是从火星上逃逸的氢气
大气逃逸这种现象不仅仅是地球会发生,其他行星也会发生这种现象。研究行星大气逃逸以能够帮助我们了解行星的概况,也可以了解包括地球在内的行星的过去以及未来的命运以,所以研究那些遥远的系外行星是我们了解行星未来的一个途径。
那些太阳系外的遥远行星被称为系外行星,系外行星当中所表达的意思是:任何一颗围绕太阳以外的恒星运行的行星都被称为太阳系外行星或系外行星。目前被确认的系外行星已有5000多颗,其中绝大部分是通过“凌日法”发现的,而这个探测行星的方法就是:当一颗行星从恒星前面经过的时候,会观测到这颗恒星的亮度会突然下降。
图源:网络图解:当行星经过恒星前面时,会挡住恒星所发出的一部分光,导致恒星的亮度下降
“凌日法”探测到的行星都有一个共同的特点,那就是观察这颗恒星的中央,会看到这颗恒星是在闪烁的,而造成恒星闪烁的原因是有行星遵从特定的轨道周期性从恒星前面经过,并且将一部分来自恒星的光挡住了,所以就会看到闪烁的光。
通过在夜空中观测那些闪烁的恒星可以找到系外行星,虽然我们看不见这些系外行星,当行星绕到恒星前面时光度就会变暗,观察光度的明暗以及持续的时间,因此相知道行星的概况不仅仅是只有对行星本身的研究,还可以通过行星遮挡恒星后所发出的光来得知行星的概况,比如不同的波长以及光线的亮度变化等等。