1
数与代数
1、自然数包括正整数和0,所以最小的自然数是0,没有最大的自然数。
2、计数单位是指:个、十、百、千、万、十万、百万、千万、亿„„等等。
3、每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4、能被2整除的数叫做偶数。0也是偶数。不能被2整除的数叫做奇数。
5、一个数,如果只有1和它本身两个约数,这样的数叫做质数,如2、3、5、7、11、13等等;
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、10都是合数。
6、最小的自然数是0,最小的质数是2,最小的合数是4。公因数只有1的两个数叫做互质数。
7、为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。如·1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位
的数12.543 亿。
8、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13 亿。
9、四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。
10、商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
11、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
12、分数的基本性质:
分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。乘积是1的两个数互为倒数。1的倒数是1,0没有倒数。
13、比、比例、比例尺、百分数的后面不能带单位。
2
运算法则(小数、分数和整数的运算法则一样)
1、同级运算,从左往右。(加和减是第一级运算,乘和除是第二级运算)
2、两级运算,乘除优先,加减在后。
3、有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。
3
运算定律(总共5个,加法2个,乘法3个)
1、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a b=b a
2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a b) c=a (b c)
3、乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a
4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)
5、乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,
即(a b)×c=a×c b×c
4
运算性质
1、减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即
a-b-c=a-(b c)
2、除法的性质:从一个数里连续除去几个数,可以从这个数里除去所有除数的积,商不变,即
a÷b÷c=a÷(b×c)
3、被减数-减数=差,被除数÷除数=商。
5
式与方程
1、含有未知数的等式就是方程,如x 5=6
2、解方程的步骤:
①去分母
②去括号
③移项
④合并同类项
⑤系数化为1
3、列方程解应用题的步骤:
①审题,用x表示未知数。(一般问什么就设什么)
②找出等量关系,列方程。(这一步最最重要)
③解方程。
④检验、写出答案。
6
常见的量
1、长度单位换算
1千米=100米
1米=10分米
1分米=10厘米
1米=100厘米
1厘米=10毫米
2、面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
3、体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
4、重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
5、人民币单位换算
1元=10角
1角=10分
元=100分
6、时间单位换算
1世纪=100年
1年=12月
大月(31天)有:18 月
小月(30天)的有:49 月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
闰年:4年一闰,100年不闰,400年再闰。(如:2008是闰年,1900年不是闰年,2000年是闰年。)
1日=24小时
1时=60分
1分=60秒
1时=3600秒
7
几何形体周长、面积、体积计算公式
1、长方形的周长=(长 宽)×2
C=(a b)×2
2、正方形的周长=边长×4
C=4a
3、长方形的面积=长×宽
S=ab
4、正方形的面积=边长×边长
S=a·a= a²
5、三角形的面积=底×高÷2
S=ah÷2
6、平行四边形的面积=底×高
S=ah
7、梯形的面积=(上底 下底)×高÷2
S=(a+b)h÷2
8、直径=半径×2
d=2r
半径=直径÷2
r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2
C=π d =2πr²
10、圆的面积=圆周率×半径×半径
S=πr
11、长方体的体积=长×宽×高
公式:V=abh
长方体(或正方体)的体积=底面积×高
公式:V=sh
12、正方体的体积=棱长×棱长×棱长
公式:V=aaa=a³
8
圆柱和圆锥的公式
1、圆柱:两个底面是相同的圆,有无数条高,侧面展开是一个长方形或正方形。
2、圆锥:一个底面是一个圆,只有1条高,侧面展开是一个扇形。
3、如果一个圆柱和圆锥等底等高,那么,这个圆柱是圆锥体积的3倍,圆锥是圆柱体积的1/3。
9
正、反比例
1、12个字:除正乘反,正比例:比值一定;反比例:乘积一定。(判断的依据)
2、一般式:
正比例:y/x= k或y=kx(k一定)
反比例:xy=k或y = k/x(k一定)
3、图像:
正比例:一条直线
反比例:一条曲线
4、判断依据就是看两个相关联的量的比值或乘积是否一定,若比值一定,则是正比例;若乘积一
定,则是反比例;若都不符合,则为不成比例。
10
比例尺
1、图上距离与实际距离的比,就是比例尺。比例尺没有单位。
2、1:100的意思是:图上1厘米代表实际距离100厘米。
3、三个公式:
比例尺=图上距离÷实际距离;
实际距离=图上距离÷比例尺
图上距离=比例尺×实际距离
4、方向:上北下南左西右东
5、千米化厘米添5个“0”,厘米化千米去掉5个“0”。
6、解决有关比例尺的问题,一是要统一化成低级单位;二是要熟记比例尺的三个公式。
7、图形的放缩:我们可以把小图放大,也可以把大图缩小,但只有把原图的长和宽放大或缩小相同的倍数,才能画得像。(如3:2=6:4=9:6等等)
11
找规律
看差看商、看某数的平方或立方、隔开看、分组法等等。
12
线与角
1、直线无端点,不可度量;射线1个端点,不可度量;线段两个端点,可度量。
2、从直线外一点到直线的线段中,垂直线段最短。这条垂直线段叫做点到直线的距离。
3、锐角:小于90度的角;
直角:等于90度的角;
钝角:大于90度的角小于180度的角;
平角:等于180度的角;
周角:等于360度的角。三角形的内角和为180度。
13
统计与概率
1、三种统计图:
条形统计图(表示各个量的多少)、
折线统计图(表示数量多少、反映增减变化)
扇形统计图(表示部分与整体的关系)。
2、平均数:几个数量的和除以数量的个数;
中位数:数据从大到小或从小到大排列,最中间的一个或最中间的两个的平均数。
众数:在一组数据中出现次数最多的数。
3、事情的发生有三种情况:
第一种是必然事件:一定会发生的事件,概率是1
第二种是不可能事件:一定不会发生的事件,概率为0
第三种是随机事件(也叫可能事件):可能发生也可能不发生的事件,概率是大于0小于1