注意:在大多数应用中,凸轮轴位置(CMP)传感器和上止点(TDC)传感器是同一事物,有两个不同的名称。
CMP的主要功能也称为“气缸识别传感器”,或更不常用的是“相位检测器”,它的主要功能是确定接下来应向哪个气缸供应燃料。实际上,CMP传感器为PCM(动力总成控制模块)提供了有关发动机点火顺序的数据,但请注意,PCM总是参考气缸#1接近TDC的时间来计算燃油输送时间。
但是,在某些应用中,PCM不需要识别1号汽缸或点火顺序,因为该信息是从传感器获得的,该传感器识别出曲轴和/或其他旋转组件相对于汽缸TDC位置的位置。
为什么需要凸轮轴位置传感器(CMP)/上止点(TDC)传感器?为了使现代发动机平稳高效地运行,发动机管理系统需要同时启动,监视,控制和调节多个过程。通常,这些过程包括点火正时,燃料喷射正时的控制和调节,以及喷射器脉冲宽度,气门/凸轮轴正时等的控制,包括计算吹扫EVAP系统的最佳时间。
在实践中,尽管许多传感器在任何给定时刻都有助于整体发动机管理策略,但使用一个传感器,在这种情况下,CMP传感器提供主要输入数据,可以对所有其他输入进行测量,从而提供了简单,经济高效的解决方案。确保发动机始终有效运行的可靠方式。
凸轮轴位置传感器(CMP)/上止点(TDC)传感器如何工作?当今使用的CMP传感器有3种类型,我们将在下面简要讨论所有这些类型:
霍尔效应传感器
这是当今使用的最常见的CPM传感器类型。在仍使用分配器的较旧应用中,传感器位于分配器中,而在较现代的应用中,传感器位于凸轮轴附近。
在基于分配器的系统中,传感器位于带孔旋转筛网的一侧,该筛网将传感器与磁铁分开。随着屏幕旋转,穿孔使传感器和磁体相互作用,这种相互作用产生磁场,该磁场被转换为放大的电脉冲。每当屏幕上的穿孔在传感器和磁铁之间通过时,都会产生此脉冲,但始终相对于#1汽缸的位置,该位置代表PCM用于计算适当的燃料输送策略的输入数据。在无分配器的系统上,电脉冲的产生方式相同,但是在这些系统中,旋转滤网由固定在凸轮轴上的装置代替,该装置允许在凸轮轴旋转时产生脉冲信号。
交流输出传感器
这些传感器产生一个AC(交流)信号,该信号由一个励磁线圈产生,该励磁线圈由PCM馈入高频电流(通常在150至2500个循环p / sec之间)。当凸轮轴上的槽随着凸轮轴旋转而通过线圈时,线圈的槽电感发生变化,从而产生交流电流,该交流电流用于指示气缸#1相对于TDC的位置。这种类型的CMP传感器通常用于Opel / Vauxhall ECOTEC发动机。
发动机上的凸轮轴位置传感器(CMP)/上止点(TDC)传感器在哪里?在无分配器的系统上,CMP传感器最通常位于阀盖内或阀盖上,并且应使其紧邻凸轮轴上的磁阻装置。请注意,在具有多个凸轮轴的发动机上,每个凸轮轴都可以配备有自己的CMP传感器。
在基于分配器的点火系统上,CMP传感器最通常位于分配器内部,并且需要取下分配器盖才能接近CMP传感器。
凸轮轴位置传感器(CMP)/上止点(TDC)是什么样的?上图显示了典型的凸轮轴位置传感器的示例,例如几乎在任何无分配器的发动机上都可以找到的示例。请注意,在大多数情况下,带有独立的进气和排气凸轮轴的发动机,传感器的外观和电气规格都相同。
请注意,尽管在某些情况下进气/排气CMP传感器可能并不相同;无论是外观还是内部电阻和/或其他电气规格。因此,重要的是始终参考受影响的应用程序的手册,以正确识别CMP(以及与此有关的所有其他发动机传感器),以避免错误诊断和对应用程序电气系统的额外损害。
凸轮轴位置传感器(CMP)/上死点(TDC)传感器损坏的可能症状注意:请注意,无论使用哪种CMP传感器类型,在使用CMP传感器确定#1汽缸位置的应用中,CMP传感器生成的信号必须与CKP(曲轴位置传感器)的输入数据同相。
在这一点上,重要的是要注意,正时皮带的安装不当或钢正时链条的过度磨损/拉伸是造成相位差的最常见机械原因。还应注意,在某些本田最新型号应用中,凸轮轴上的端部间隙过大是这些应用中CMP传感器生成不准确,不可信或间歇性信号的主要原因。
尽管如此,CMP传感器出现故障的某些常见症状可能包括以下情况:
- “ CKECK ENGINE”照明灯
- 油耗可能大幅增加
- 可能存在无启动或硬启动条件
- 空转可能是粗糙的,不稳定的,或者空转速度可能会剧烈波动
- 在运行过程中,发动机可能会在一个或多个气缸上失火;在大多数情况下,将通过专用的失火相关代码来识别失火气缸
- 发动机可能频繁失速或意外失速
- 根据问题的性质,可能会出现不同程度的功率损耗
- 在严重的情况下,PCM可能会启动故障保护或li行模式,这种模式将一直持续到问题解决为止
请注意,除了一种或多种一种或特定于制造商的代码外,以下通用OBD II通用代码中的一种或多种也可能存在-
- P0340 –凸轮轴位置传感器电路故障
- P0341 –凸轮轴位置传感器电路范围/性能
- P0342 –凸轮轴位置传感器电路输入电压低
- P0343 –凸轮轴位置传感器电路高输入
- P0344 –凸轮轴位置传感器电路间歇性
- P0345 –凸轮轴位置传感器A电路(组2)
- P0346 –凸轮轴位置传感器A电路范围/性能(组2)
- P0347 –凸轮轴位置传感器A电路输入电压低(组2)
- P0348 –凸轮轴位置传感器A电路高输入(组2)
- P0349 –凸轮轴位置传感器A电路间歇性故障(组2)
- P0365 –凸轮轴位置传感器B电路(组2)
- P0366 –凸轮轴位置传感器B电路范围/性能(组2)
- P0367 –凸轮轴位置传感器B电路低输入(组2)
- P0368 –凸轮轴位置传感器B电路高输入(组2)
- P0369 –凸轮轴位置传感器B电路间歇性故障(组2
- P0390 –凸轮轴位置传感器B电路(组2)
- P0391 –凸轮轴位置传感器B电路范围/性能(组2)
- P0392 –凸轮轴位置传感器B电路低输入(组2)
- P0393 –凸轮轴位置传感器B电路高输入(组2)
- P0394 –凸轮轴位置传感器B电路间歇性故障(组2)
- P0395 –凸轮轴位置传感器B电路高输入(组2)
- P0396 –凸轮轴位置传感器B电路间歇性故障(组2)
与大多数其他发动机传感器不同,CMP传感器通常可以延长车辆的使用寿命,并且大多数CMP传感器相关的代码是由接线问题引起的。因此,任何涉及CMP传感器的诊断程序都必须从对所有相关的电线和连接器进行彻底的目视检查开始。寻找以下内容-
- 接线和/或连接器腐蚀,烧毁,短路,损坏或断开;根据需要进行维修
- 在所有相关的电线和连接器上执行电阻,连续性,参考电压(如果适用)和接地完整性测试。根据需要更换或修理接线,以确保所有电气值均在制造商指定的值之内。
注意:由于所有制造商的CMP传感器都有大量的设计规范,因此在本简要指南中无法为所有甚至大多数应用程序提供准确的诊断数据/过程。请注意,只有通过使用示波器或可以充当示波器的高端经销商级扫描工具,才能获得最可靠的测试结果,并且仅当合适的参考数据以适用的波形形式出现时才能获得。库可用。如果没有合适的诊断设备和/或参考数据,比较明智的选择是将车辆转介给经销商或其他有资格的维修机构,以进行专业的诊断和维修。
但是,请注意,虽然可以在DIY的基础上对CMP传感器进行一些基本测试,但本指南只能使用数字万用表提供一些通用测试,而这些测试可能会或可能不会揭示问题的根本原因。这是寻找的东西-
检查感应式传感器电阻
在电感式CMP传感器上,内部电阻应在200Ohm至900Ohm的范围内,但请注意,应对照适用于受影响应用的可靠参考数据检查获得的读数。没有适用于所有电感式CMP传感器的单个电阻值。
检查霍尔效应传感器输出
将万用表的正极探针连接到传感器的信号电路,将负极探针连接到适当的接地。发动机空转时,显示的电压应平均约为2.5伏,而占空比(“接通”时间)应约为50%左右。
交流输出传感器
请注意,由于这些传感器产生的信号的性质,通常无法使用万用表进行测试。测试这些传感器的唯一可靠方法是使用示波器,有时使用双通道示波器检查CMP和CKP传感器之间的相位同步性。
如何更换凸轮轴位置传感器(CMP)/上止点(TDC)传感器在大多数情况下,CMP传感器的更换将遵循以下一般模式:
- 确保发动机冷,以防止持续燃烧和烫伤
- 找到阀盖上的传感器
- 断开接线
- 卸下单个固定螺丝/螺栓
- 拔出传感器,然后插入替换件
- 插入并拧紧固定螺钉/螺栓,但不要过度拧紧螺钉/螺栓,以免剥落阀盖中的软螺纹
- 重新连接导线,并试驾车辆以确认问题已解决
注意:在大多数情况下,CMP传感器位于与发动机机油直接接触的位置,这就是为什么这些传感器配备有油封的原因,并且通常采用橡胶O形圈的形式。为防止在更换CMP传感器后漏油,请务必同时更换O形圈或其他所需的油封。