三角形的中位线证明一直是初中几何性质定理证明的难点,既要证明数量关系,又要证明位置关系。而证明突破口就在于能否根据中点添加相应的辅助线,证明的方法虽然多,但是万变不离其宗,都是围绕中点的性质进行展开。
背景条件:在三角形ABC中,D、E分别为AB、AC的中点,联结DE。试探索DE与BC的数量关系与位置关系。
一、倍长中线添加辅助线
证法1(图1)和证法2(图2)借鉴了教材引入中的剪拼法,利用中点的对称性添加辅助线,得到全等三角形,通过全等三角形及平行四边形性质,得到DE与BC的数量关系及位置关系。
二、利用中点,构造平行四边形
证法3(图3)和证法4(图4),通过添加平行线,利用中点构造平行四边形,再根据全等三角形性质和平行四边形的判定和性质,得到DE和BC的数量关系和位置关系。
三、利用面积法证明