1.简介
在电源及电机控制中常用到过流保护功能,这需要对电流进行采样。同时,如果用单片机实现检测电流进行保护的话需要消耗大量CPU时间,因此我用硬件电路设计了一种带自锁功能的过流保护模块,这对于过流保护可以实现模块化,方便使用。该模块采用ACS712霍尔传感器采集电流,可将正负过流保护值可以分开来设定,将输出转为0-3.3V的电压,方便DSP采样,最后绘制了PCB,制作了出来。
2.电流采样电路的设计
2.1采样电路的比较
电流采样电路通常有“高(压)端电流采样”和“低(压)端电流采样”和“霍尔传感器采样”三种采样电路,如下图所示,给出高端和低端两种采样电流形式。
图2-1 低端电流采样
图2-2 高端电流采样
( 1 )高端电流检测具有如下特点:
优点:可以检测区分负载是否短路、无地电平干扰
缺点:共模电压高,使用非专用分立器件设计较复杂、成本高、面积大
(2)低端电流检测具有如下特点:
优点:共模电压低,可以使用低成本的普通运算放大器
缺点:检测电流电阻的引入地电平干扰,电流越大地电位干扰越明显,有时至会影响负载
(3)霍尔传感器采样具有如下特点:
优点:对采样信号进行隔离,适合大功率场合
缺点:易受到电磁干扰的作用
本设计考虑到通用型,同时整个系统电流采样保护都与控制部分隔离的情况,采用霍尔电流传感器ACS712进行电流采样。
3.转换为0-3v输出信号调理电路的设计
ACS712采用单电源5V供电,输出具有很好的线性度,如下图所示。
图3-1 ACS712输出电压与检测的电流关系
可以看出,当检测电流为0A时,输出2.5V,当电流为 5A时输出电压3.5V,当电流为-5V时输出为1.5V,具有很高的线性度。但是通常DSP的AD采样量程时0-3.3V的,这就需要运行进行调理,转换为0-3.3V之间的电压。注意,由于运放是单电源5V供电,因此需要用轨对轨运放,如LMV358。
由于ACS712输出带载能力有限,通常采用一级电压跟随提高带载能力。之后在后级先用电阻分压,再送入同相比较端,同相放大一倍。分压电阻R2、R3需要先将0-5V的电压分为0-1.5V的电压,因此电阻比为3:7。在后级同相比例放大两倍即为0-3V之间的电压值。电路如下图所示: