在上文,我们用“真空显微镜”看到了原子,又打破原子看到了电子、质子和中子,以及质子和中子相互转化过程中出现的中微子。那把这些粒子剔除,剩下的是不是我们想要的“真空”呢?
今天,让我们再次拿起真空显微镜,继续探索真空里的奥秘。
第三阶段:正电子和夸克上次我们在文章中遗留了一个问题:“正电子”是什么?
让我们把目光放回到1927年,这是量子力学发展史上重要的一年。这年狄拉克提出了狄拉克方程,它的具体内容是啥我们暂时不需要了解,我们只要知道它是量子力学里一套非常完备的方程,让量子力学更好地兼容了相对论。
但是狄拉克方程有一个问题,就是它在求电子能量的时候,遇到了开根号的情况。我们知道开根号能得出两个解:一正一负。一般情况下能量怎么会有负值呢?我们会很自然地把那个负值舍掉。但是大佬之所以成为大佬,就在于他能看到一般人忽略的东西。狄拉克想:这些有负能量的电子该如何解释呢?负能量有啥物理意义呢?
按照量子力学,原子轨道都是分离的、不连续的,最里层的轨道能量最低,最外层的轨道能量最高。电子一个个地分布在这些轨道上,并且它们还要满足泡利不相容原理(电子不能肆无忌惮地选轨道,每个轨道上最多容纳两个电子还得自旋不同)。
在此基础上,狄拉克展开了想象:会不会能级的能量可以一直低到负能级去呢?这些负能级看不见,而且根据泡利不相容原理,这些负能级都被负质量的电子填满了,所以正能级上的电子都不能跌到负能级上,这些装满电子的负能级就被叫做“狄拉克海”。狄拉克海在哪呢?就在我们苦苦寻觅的真空里。
狄拉克海(图片来源:作者自制)
填满真空又无处不在,不知道读者们看着有没有一丝熟悉的感觉,没错,这不就是以太嘛!
话说回来,当狄拉克海中的负能级上的负质量电子吸收能量后,它会跃迁到正能级上,并在原来的真空中留下一个坑,这个坑是真实的粒子,它虽然有电子的质量但却带正电,所以狄拉克叫它正电子。
虽然狄拉克海的理论在后来的量子场论中被抛弃了,但是狄拉克预言的正电子是真实的,并在1932年被安德森发现。
首张观测到正电子存在的云室照片,由安德森所摄。云室的上下两部分由一片6毫米厚的铅片分开,可以肯定该正电子是从下方进入。
(图片来源:https://zh.wikipedia.org/wiki/)
正电子是人类发现的第一个反粒子,它的发现也开启了一条寻找粒子的全新道路——寻找反粒子,之后人们又找到了反质子、反中子、反中微子等等。这里需要解释一下什么是反物质。人们可能很容易接受反电子和反质子,认为只要电荷相反,其他性质相同就是反粒子了。
但事实并不是这样,粒子的性质我们知道有大小、质量、寿命等等,在量子力学里,我们用量子数来描述粒子的某些性质比如读者熟悉的自旋、电荷,而像这样的量子数还有很多,像奇异数、重子数等。
反物质粒子是指质量、寿命、自旋都与正常粒子相同,但是所有内部相加性量子数比如电荷、重子数、奇异数等是大小相同方向相反的。
20世纪随着大型对撞机的高速发展,人们又陆续发现了200多种大小不一、性质各异的粒子,还用了一个相对“草率”的分类方法:把质量介于质子和电子之间的粒子叫介子,人们发现的介子有π介子、K介子等等;质量大于质子的叫超子,有λ超子、ξ超子等,20世纪后期人们发现的粒子大部分都是超子。
这些介子超子被统称为奇异粒子。这些奇异粒子的寿命大都非常短,平均寿命大约是10^(-5)秒,远不如质子、中子、电子哥仨,所以我们生活中很难遇到它们。
看着粒子种类越来越多,都快要超过元素的种类了。我们不禁会问:难道就真的没有那么几种最基础的粒子构成了所有粒子吗?其实物理学家对这件事也是非常执着的,很多人提出过不同的所谓标准粒子模型,例如1949年费米和杨振宁提出过费米-杨模型,认为只有中子、质子和它们的反粒子才是基本粒子,后来被证实失败了。
到了1964年,盖尔曼根据群论分析提出了一种夸克模型,夸克模型认为那些参与强相互作用的粒子(简称强子),它们都是由更基础的粒子——夸克和它们对应的反夸克组成的。
这里得解释一下强相互作用。原子核由中子和质子组成,而原子核的体积只占原子体积的几千亿分之一,也就是说一堆质子和中子挤在一个很小的区域里。更要命的是质子都带正电,所以它们会相互排斥,仅凭万有引力是远远不够抵消这种排斥作用的,那么肯定有一种更强的相互作用把它们圈在一起,这种作用被假设为强相互作用。
由两个上夸克和一个下夸克构成的质子 (图片来源:维基百科)
最初盖尔曼提出了三种夸克:上夸克、下夸克、奇异夸克,后来人们又陆续发现了另外三种夸克:粲夸克、底夸克、顶夸克。根据量子色动力学,这六味夸克还有三种“颜色”:红绿蓝,反夸克也具有反颜色。当然这个颜色并不是真正的颜色,只是代表一种量子数而已。
经过多年的理论和实验验证,目前这个夸克模型还是很靠谱的,而且大部分奇异粒子都是强子,所以夸克模型在建立基本粒子模型上帮了大忙。
在得知夸克模型之后,读者们是不是已经急着要总结所有基本粒子,结束这次真空寻找工作了?但是在这之前还有一件事我们不得不考虑一下。
第四阶段:看不见摸不着的“场”在上面的粒子探索之旅中,我们从电子讲到夸克,基本已经涵盖了构成已知“物质”的所有原材料。但还有一个很重要的问题:这些粒子是如何组合在一起的,它们之间有什么相互作用力?
这时候可能有人就要问了,力又不是物质,不管什么力都不会影响我们对真空的理解吧?其实不然,在物理学中粒子之间的力牵扯到了一种奇特的物质,它与元素和原子都很不同,看不见摸不着,但却是确实存在的,那就是场。
读者可能听过这样一个故事:老和尚分别给三个徒弟十文钱,叫他们各自买一样东西把禅房填满。大徒弟买了一堆木头,二徒弟买了一堆稻草,双双失败;三徒弟买了一根蜡烛,光辉瞬间照亮了房间。不知道三徒弟佛法学得怎样,但物理一定是不错的,因为他不仅知道光是一种电磁场的波动,还知道场是一种物质。
场的思想最初是拉普拉斯为了解释万有引力所提出的,但是它真正大放异彩还是在电磁学之中。17世纪20年代,奥斯特和法拉第等人相继发现通电导线可以对磁针施加力,磁铁也能对通电导线施加力的现象。虽然铁证如山,但是就像当年的万有引力一样,人们很难接受两个物体不接触就能发生力的作用。
于是法拉第提出了他大胆的设想,既然人们不能接受没有物质接触,那我假设有一种物质作为媒介不就好了吗?于是他借鉴了拉普拉斯的想法,将这种媒介命名为“场”。通电导体没有对磁针施加作用力,而是它周围的电场对磁针施加了力,磁铁周围有类似的磁场。
电磁场的成功对物理学的影响是不可估量的,从此以后,“场”在人们解释相互作用的过程中频频出现。
在对物质相互作用的研究过程中,人们先后提出了四种基本相互作用力,分别是:万有引力、电磁力、弱相互作用力、强相互作用力。万有引力和电磁力我们都比较熟悉,这里解释一下弱力和强力。
还记得我们前面提到的β衰变理论吧,简单来说弱力就是控制质子中子发生衰变的力,而强力是前面讲到的原子核中质子和中子之间的吸引力。
人们认为这四种基本相互作用力足以描述物质间的一切现象,而就像我们前面提到的那样,没有接触的相互作用很难为人所接受,所以关于这四种相互作用的研究都离不开场的影子。
那么场是怎样传递相互作用的?这就要用到一些量子力学的知识了。量子力学里有一个重要思想就是把原来连续的东西量子化,也就是把原来连续的东西看成不连续的,连续的波动也可以看作是一个个的粒子。
举个例子,光是电磁场的波动,但是它也能看成是由一个个的光子组成的。很多人会疑惑那光到底是波还是粒子呢?答案是它既是波也是粒子。