这其实就是一个P/NP问题——是否有一种方法,让集卡的过程轻而易举?
所以,GPT-4是怎样得出P≠NP的?让我们往下看。
97轮对话,给出P≠NP结论
在这项研究中,研究者GPT-4学会了一种「苏格拉底式推理」。
他们引入了五个不同的角色(比如精通概率论的数学家),作为协助证明者,根据自己擅长证明不同的部分。
GPT-4用这种方法,开发了一种推理路径,得出了和北航Ke Xu、北工商Guangyan Zhou(论文三作和四作)最近提出结果一致的结论!
论文地址:https://arxiv.org/pdf/2302.09512.pdf
在最初的14轮对话中,GPT-4被引导设计出了初步的证明模式。
GPT-4被问的第一个问题是:「你能从哲学角度而不是计算机理论角度找到P!=NP问题背后的根本问题吗?」
在这个提示中,技巧在于鼓励模型创造性回答,避免进行检索。比如,「如何证明 P!=NP」这样的提示可能会引导大模型进行检索。
用上「苏格拉底式推理」中的转换模式后,就可以生成更具创新性的回答。
对于这个问题,GPT-4是这么回答的——
P!=NP问题背后的基本哲学问题,可以看作是创造力、直觉和洞察力(通常与NP问题相关)与系统化、算法和确定性方法(与P问题相关)之间的矛盾。
如果P=NP,那就意味着宇宙有一种基本的简单性,表面上看似复杂的问题都有高效、优雅的解决方案。