(即穷举搜索)的情况下是不可解的,也就是说,证明结论为P≠NP。
是的,如果你能严格证明存在一种特定类型的NP完全问题,当变量数趋于无穷大时,无法在多项式时间内求解这类问题,就可以认为,证明了P!=NP。
在Ke Xu和Guangyan Zhou的论文中,他们构建了CSP和SAT的极难示例,证明了这些示例在没有穷举法的情况下无法求解。
而GPT-4,也得出了一致的结论。
是的,如果我们能够证明不存在一种算法能够以低于
的时间复杂度解决某些SAT实例,那么当变量数量趋于无穷大时,它确实可以为某些无法在多项式时间内解决的NP完全问题的存在提供强有力的证据。
这项研究再次证明,GPT-4有充分的潜力与人类合作,共同探索极其复杂的专家级难题。
LLM不仅能掌握基本知识,还可以在广泛的解空间中发现新的见解。这也预示着科学LLM的范式下,科学发现的无限前景。
苏格拉底式推理那么,GPT-4展现出如此强大,思维推理能力,背后的极致究竟是什么呢?
古希腊哲学家苏格拉曾说过,「我不能教会别人任何事,我只能让他们思考」。
这次,研究人员恰巧就从中汲取了灵感,提出一种通用问题的解决框架——苏格拉底式推理(Socratic Reasoning)。
简单讲,苏格拉底方法就是让我们「一步一步思考」,提出一系列问题激发批判性思维。
这对于大模型来说,如果能够进行批判性思考,就可以针对复杂问题提出高效的解决方案。
对此,研究团队指出这一框架旨在推动LLM解决高度复杂任务,协调各种子问题,并引导其搭建高层次推理途径。
「苏格拉底式推理」是在人类与LLM之间的一系列对话回合中进行的,是与LLM一起解决复杂挑战的递归机制。
如下图所示,「苏格拉底式推理」有5种强大的提示模式:演绎、转换、分解、验证、整合。
通过发掘新的见解和观点,将复杂问题分解为子问题或步骤,并通过质疑回答进行自我完善。