他在19岁那年又证明了二次互反律,二次互反律在数论的发展史中处于中心地位。就连欧拉都没有给出严格的证明,高斯不仅给出了第一个严格的证明,后来又给出了7种证明方式,完全不给其他的数学家活路。
高斯还给了虚数以意义,对复数的发展作出重要的推动作用,他在1799年、1815年、1816年对代数基本定理作出的三个证明中,都假定了复数和直角坐标平面上的点一一对应,1831年他对复平面作出详细的说明。
电影中的高斯形象
1832 年,高斯系统地完善了复数理论,他第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合。统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数一一对应,扩展为平面上的点与复数一一对应。高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间一一对应的关系,阐述了复数的几何加法与乘法。
复数理论的建立解决了很多的问题。比如最简单 x^2 1=0 在此之前无法得出解,而在复数理论提出之后,人们提出了复根的概念去解决这类问题,复根就是复数根,复数是由实部和虚部构成的,实部是实数,虚部是纯虚数。就是达朗贝尔提出的a bi的形式。后来,我们用符号C来表示复数集,用符号R来表示实数集。
虚数以及由其建立的复数理论在后来被数学家广泛运用,复平面的完善,“一切数”都能在复平面中找到。如今,虚数和复数在各个领域如物理学、电子信息工程等领域发挥着重要的作用。
高斯他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。
以他名字“高斯”命名的成果达110个,属数学家中之最,比如说高斯分布(正态分布),高斯模糊,高斯积分,高斯整数,高斯消元,高斯曲率,高斯滤波器,高斯引力常数。可以说大物里有高斯、高数里也有高斯、几何里也有高斯、….你闭上眼睛,在理工科(技术类)书籍里随便挑一本书。里面一定能找到高斯这么个名字…你随便拆一个app看代码。,一般一定有不止一个公式(或者包里的公式)和高斯有关。