在第一部分的最后,我们提到了机械轨迹量,下边,我们来看看为什么要在轨迹量的基础上引入机械轨迹量这个参数。
- v 机械轨迹量:通过轮胎接触面和转向轴垂直的距离。机械轨迹量也被称为真实轨迹量,它和地面上的轨迹量密切相关,因为增加其中一个就会导致另一个增加。地面上的轨迹量是对机械轨迹量良好模拟,但是机械轨迹量是更加真实的测量,因为它的大小直接与车轮自动居中的“脚轮效应”相关。
当车轮转向一侧时,车架前端会下降,这里选用了一个比较极端的转向角为了更加明显看到车架前段的下降量。这种下降一方面会由于车手重量分布靠前,另一方面也会因为车把倾斜的重力而导致车轮更加远离直线,这种现象就被称为车轮翻转。
车轮翻转的量由mm为单位计算,因为当车架前段下降后,此时前叉偏移量保持了同样的数值,所以这最终导致了轨迹量的改变。在上一节的轨迹量(Trail)结尾处,我们提到了机械轨迹量的概念。而前轮的翻转值就是转向后的机械轨迹量减去正常直立状态下的机械轨迹量的差值(也可以简化理解为车把转动后,前轮花鼓高度的变化范围,范围越大,这种转向趋势越明显越灵活,但是越难以操控。反之亦然)。
- 体验这种感觉得方法可以让前轴高于后轴,此时翻转值减小,车把会更加灵活,因为翻转值增加。反过来后轴高于前轴翻转值会减少,转向会变得迟钝。现实状态下可以从上角度比较大的坡路中去感受。低速状态下上坡,此时头管角度增加,实际trail也增加了,理论上会有更好的稳定性,但是由于车轮翻转量也随之增加,所以会让转向更加灵活,更容易转向过度。
对于正常的头管角度范围来说,头管下降的越多(头管角度越大),那么机械轨迹量就会越大。
对于车手而言,在低速状态下,车轮翻转的效应会更加明显,因为这会有助于前轮转弯(尝试一下定车,你就能感受到前轮翻转的效应)。当前轮翻转值越大时(比如20mm),那么它会比数值更小的翻转值的车(比如10mm)更加倾向于转向。虽然翻转值会有助于你在骑行中转向,但是如果太多,那么就会非常容易超过可控范围(试想比赛慢骑行中的状态,车把超过范围后会急速的向一个方向旋转,过大的翻转值会减少趋势的可控范围)。而在高速状态下,头管角度的大小会占主导地位。这就是为什么具有更加倾斜的头管角度的自行车会在低速状态下更加容易向侧方翻转难以控制,但是在高速状态下特别是在转向中,会更加稳定和趋于自动保持轨迹的原因。