- 上图反应了随着轮胎宽度的增加,轨迹量(trail)和车轮翻转值(wheel flop)之间的关系。其中横轴表示轮胎宽度,纵轴表示这两个数据的变化幅度。
轮胎的宽度还和另一个被称为”轮胎轨迹量“的东西有关。由于个轨迹量和轮胎与地面的接触面积有关,简单解释的话,就是在车轮转向的过程中,轮胎接触面并不是处于一种平滑的过度状态,而是处在一种和地面滑动摩擦的状态,这会产生一种让轮胎重新回到直线行驶轨迹的趋势,当车轮继续转向时,轮胎接触面和地面完成一次转向摩擦,连续的滑动摩擦最终完成一次转向。并且这种趋势会随着轮胎宽度的增加而增加。这会让从转弯开始的一瞬间就产生一种车轮自动会正的效果。不过,关于在自行车上的轮胎宽度和轨迹量的关系,还没有确切的指标,所以就不再更进一步的讨论,我们只要知道,这个力是存在的,并在自行车范围内,会带来一些自稳定性就可以了。配合下图会更容易理解一些。
上图显示了轮胎接触面的被动转向过程,可以简单理解为轮胎对地面施加的力就是轮胎自动回中的力。
在公路自行车的情况下,这个接触面积比较小,所以这种影响可以忽略。但是更宽的轮胎(比如40mm)就会是不同的情况,这就是为什么更宽的轮胎,就会需要更多的转向扭矩来补偿操控性的下降的原因。
以上关于轮胎对操控的影响,可以解释为什么明显更大的轮胎(比如用于gravel公路车)总是会给你带来略微迟钝的操控感受,但是却可以提供高速下的稳定性。转向会在低速时感觉迟缓或者不精准,除非使用更小的车轮直径(比如通过使用650B安装更宽的轮胎来获得近似的轮经)来抵消这种效果中的一些,不然就会在操控上给你带来相当大的迟钝反馈。
上边所描述的使用更小的轮组配合更宽的轮胎,对保留原有车架几何角度非常有意义。比如下边的例子:对于一辆头管角度71°,前叉偏移量55mm的自行车而言,当使用25mm轮胎的700C轮组是,它的轨迹量(Trail)是59mm,车轮翻转值是18mm。但是如果只把轮胎更换为50mm的话,轨迹量(Trail)就会增加到68mm,而车轮翻转值会增加到21mm。这是一个很大的变化,这会让你的车变得迟钝。相比之下,如果采用650B*2.1的组合,那么轨迹量(Trail)则为62mm,车轮翻转值为19mm。虽然仍然会有一些预期内的反应迟钝,但是这大部分就都是轮胎轨迹量所导致的了。
在700C和650B轮组之间进行轮胎尺寸的更换,可以尽量保持原有的车架设计的几何角度。在操控上可以给你一个你所期望的范围,而不是超出自己的预期。
五通的高度从表面上来看,似乎五通的高度和自行车的操控无关,而且事实也确实是不会影响到自行车的转向。然而,五通的位置影响了车手的位置,却具体的说就是影响到了车手的重心的位置。
想一下在公路车高速下坡时的状态,双手放在下把位上,而不是手变或者把横上。这并不仅仅是获得更好的气动性,而是降低了车手的重心,获得更稳定的操控。所以,五通的位置也是以同样的方式影响自行车的操控:相对低的五通会让骑手更接近地面,获得更稳定的状态。
五通的位置通常可以用两种方式描述:1.五通到地面的高度;2.五通到车轮中心连线之间的距离。第一种情况很好的反应了自行车的离地间隙,第二种很好的反应了车手的重心位置。
- 注意红线标注的位置。五通的高度可以相对于地面测量也可以相对于前后轴测量,在相同的车上前者取决于车轮和轮胎尺寸,后者则可以用于比较不同车架之间的差别。
如果把前后花鼓作为两个点绘制一条平行于地面的直线,一般情况下,五通都会位于这条线的下方(也就是常说的五通下沉量)。究竟会下沉多少,这主要取决于车架的设计。公路车一般会设计下沉65-75mm,但是在某些情况下可能会更多一点(比如,旅行车也会有80mm或者更多的下沉量)。相比之下,山地车车架的下沉量一般较少,因为越野会需要更多的离地间隙以免脚踏或者牙盘撞击到岩石或者障碍物。