如图6.27所示,已知A点的高程HA,要测定B点的高程 HB, 可安置经纬仪于A点,量取仪器高iA;在B点竖立标杆,量取其高度称为觇 B 标高vB;用经纬仪中丝瞄准其顶端,测定竖直角α。如果已知AB两点间的水平距离D(如全站仪可直接测量平距),则AB两
点间的高差计算式为:
以上三角高程测量公式(6.27)、(6.28)中,设大地水准面和通过A、B点的水平面为相互平行的平面,在较近的距离(例如200米)内可
以认为是这样的。但事实上高程的起算面——大地水准面是一曲面,在第一章1.4中已介绍了水准面曲率对高差测量的影响,因此由三
角高程测量公式(6.27)、(6.28)计算的高差应进行地球曲率影响的改正,称为球差改正f1,如图6.28(见课本)所示。按(1.4)式:
式中:R为地球平均曲率半径,一般取R=6371km。另外,由于视线受大气垂直折光影响而成为一条向上凸的曲线,使视线的切线方向向
上抬高,测得竖直角偏大,如图6.28所示。因此还应进行大气折光影响的改正,称为气差改正f2,f2恒为负值。
图6.23 三角高程测量
图6.24 地球曲率及大气折光影响