【反思与感悟】
1.求回归方程,关键在于正确求出系数a^,b^ ,由于a^ ,b^ 的计算量大,计算时应仔细谨慎,分步进行,避免因计算而产生错误.
2.回归分析是处理变量相关关系的一种数学方法.主要解决:(1)确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;(2)根据一组观察值,预测变量的取值及判断变量取值的变化趋势;(3)求出线性回归方程.
【易错防范】
1.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.
2.独立性检验中统计量K2的观测值k0的计算公式很复杂,在解题中易混淆一些数据的意义,代入公式时出错,而导致整个计算结果出错.
【规律方法】 1.在2×2列联表中,如果两个变量没有关系,则应满足ad-bc≈0.|ad-bc|越小,说明两个变量之间关系越弱;|ad-bc|越大,说明两个变量之间关系越强.
2.解决独立性检验的应用问题,一定要按照独立性检验的步骤得出结论.独立性检验的一般步骤:
(1)根据样本数据制成2×2列联表:
(2)根据公式K2=计算K2的观测值k;
(3)比较观测值k与临界值的大小关系,作统计推断.