按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。
求数列通项公式的方法非常多,常见的有观察法,累加法,累乘法,待定系数法,倒数法,解方程法,阶差法,和与通项的关系法等。除此之外,我们还会遇到一些难度较大的方法,比如,对数法,特征根法,不动点法,奇偶分析法等等。
二·求通项公式的常见方法1·观察法:
【评注】
由数列的前几项求通项公式的常用方法为观察法,即观察第n项与项数的关系,在观察时,往往需要对各项进行变形,变成形式类似,关系统一的形式,之后利用归纳得出通项公式。注意有限项归纳出的通项公式往往不唯一,有些通项公式可以利用分段函数来表示。
2·累加法:
【评注】
数列递推关系式中满足后项与前项的差等于常数,则为等差数列,直接利用等差数列的通项公式求解,如果满足后项与前项的差等于一个函数,则考虑利用累加法进行求解。
3·累乘法: