20的所有因数有哪些

首页 > 体育 > 作者:YD1662023-06-24 11:51:38

人教版六年级数学上册

易错题集锦

一、填空题。

1、一种盐水的含盐率是20%,盐与水的比是( )。

2、生产同样多的零件,小张用了4小时,小李用了6小时,小张和小李工作效率的最简比是( )。

3、从甲地到乙地,客车要行驶4时,货车要行驶5时,客车的速度与货车的速度比是( ),货车的速度比客车慢( )%。

4、100克糖溶在水里,制成的糖水的含糖率为12.5%,如果再加200克水,这时糖与糖水的比是( )。

5、若从六(1)班调全班人数的1/10到六(2)班,则两班人数相等,原来六(1)班与六(2)班的人数比是( )。

6、把甲队人数的1/4调入乙队,这时两队人数相等,甲队与乙队原人数的比为( )。

7、六(1)班今天到校40人,请病假的5人,该班的出勤率是( )。

8、把一个半径是10cm的圆拼成接成一个近似的长方形后,长方形的周长是( ),面积是( )。

9、( )米比9米多40% , 9米比( )少55% ,200千克比160千克多( )%;160千克比200千克少( )%;16米比( )米多它的60%;( )比32少30% 。

10、钟面上时针的长1dm,一昼夜时针扫过的面积是( )。

11、一根水管,第一次截去全长的1/4,第二次截去余下的2/3,两次共截去全长的( )。

12、某种皮衣价格为1650元,打八折出售可盈利10%.那么若以1650元出售,可盈利( )元。

13、正方形边长增加10%,它的面积增加( )% 。

二、判断题。

1、某商品先提价5%,后又降阶5%,这件商品的现价与原价相等。( )

2、在含盐20%的盐水中加入同样多的盐和水后,盐水的含盐率不变。( )

3、如果甲数比乙数多25%,那么乙数就比甲数少25%。 ( )

4、半径是2厘米的圆,它的周长和面积相等。 ( )

5、直径相等的两个圆,面积不一定相等。 ( )

6、比的前项和后项都乘或除以同一个数,比值大小不变。 ( )

三、选择题。

1、数学小组共有20名学生,则男、女人数的比不可能是( )。

A.5︰1 B.4︰1 C.3︰1 D.1︰1

2、如图,阴影部分的面积相当于甲圆面积的1/6,相当于乙圆面积的1/5,那么乙与甲两个圆的面积比是( )。

20的所有因数有哪些,(1)

A、6︰1 B、5︰1 C、5︰6 D、6︰5

3、一杯牛奶,牛奶与水的比是1︰4,喝掉一半后,牛奶与水的比是( )。

A、1︰4 B、1︰2 C、1︰8 D、 无法确定

4、利息与本金相比( )

A、利息大于本金 B、利息小于本金 C、利息不一定小于本金

四、解决问题。

1、A、B两地相距408KM,客车和货车同时从A、B两地相对开出,3小时后相遇,已知客车和货车的速度比是9:8,客车每时比货车每时快多少千米?

2、东岗小学组织学生收集树种,五年级收集的树种占总质量的40%,六年级收集的树种占质量的50%,五年级收集的树种比六年级少20千克。五六年级一共收集树种多少千克?

3、一件商品按20%的利润定价,然后又按8折出售,结果亏了64元,这件商品的成本是多少元?

4、将一根384cm的铁丝焊成一个长、宽、高的比是3:2:1的长方体模型。这个模型的长、宽、高各是多少厘米?表面积是多少平方厘米?

5、一块长方形土地,周长是160m,长和宽的比是5:3,这块长方形土地的面积是多少平方米?

6、李明和张华参加赛跑,李明跑到中点时,张华跑了全程的40%,此时两人相距80米,你知道赛程多少米吗?

*7、看一本书,第一天读的页数与未读页数的比是1:3,第二天看了120页,这时已读的与未读页数的比是2:3,这本书有多少页?

参考答案

一、填空题。

1、一种盐水的含盐率是20%,盐与水的比是(1:4)。

2、生产同样多的零件,小张用了4小时,小李用了6小时,小张和小李工作效率的最简比是(3:2)。

【解析:将这批零件看作单位“1”,则小张的工作效率为:1÷4=1/4 小李的工作效率为:1÷6=1/6 两人的工作效率比为:1/4:1/6,化简后就是3:2】

3、从甲地到乙地,客车要行驶4时,货车要行驶5时,客车的速度与货车的速度比是(5:4),货车的速度比客车慢(20)%。

【解析:求速度比的方法同第2题。货车的速度比客车慢((5-4)÷5=20%)】

4、100克糖溶在水里,制成的糖水的含糖率为12.5%,如果再加200克水,这时糖与糖水的比是(1:10)。

【解析:此题关键是要先算出原来的糖水是多少克:100÷12.5%=800(克)。再求加水后糖与糖水的比:100:(800 200)=100:1000=1:10】

5、若从六(1)班调全班人数的1/10到六(2)班,则两班人数相等,原来六(1)班与六(2)班的人数比是(5:4)。

【解析:用方程来解答:设六(1)人数有a人,六(2)班人数有b人。根据题意列出方程后并求解:

20的所有因数有哪些,(2)

通过解方程得出a与b的比为10:8,即六(1)班与六(2)班的人数为10:8,化简后为5:4。 】

6、把甲队人数的1/4调入乙队,这时两队人数相等,甲队与乙队原人数的比为(2:1)。

【解析:方法同第5题。】

7、六(1)班今天到校40人,请病假的5人,该班的出勤率是(88.9%)。

【解析:用到校人数就是出勤人数。出勤人数÷全班人数×100%=出勤率。40÷(40 5)×100%≈88.9%】

8、把一个半径是10cm的圆拼成一个近似的长方形后,长方形的周长是(82.8cm),面积是(314cm2)。

【解析:拼成的长方形的周长就是这个半径为10cm的圆的周长与两个半径的和:3.14×10×2 10×2=82.8cm;长方形的面积等于圆的面积,那么面积就是:3.14×10×10=314平方厘米。】

9、(12.6)米比9米多40%【9×(1 40%)=12.6】 , 9米比(20)少55%【9÷(1-55%)=20】 ,200千克比160千克多(25)%【(200-160)÷160=25%】;160千克比200千克少(20)%【(200-160)÷200=20%】;16米比(6.4)米多它的60%【16×(1-60%)=6.4 注意:“它”是指16。】;( 22.4 )比32少30%【32×(1-30%)=22.4】 。

【解析:本题主要是考查 单位“1”(总量)、对应量、对应分率之间的关系。单位“1”(总量)×对应分率=对应量】

10、钟面上时针的长1dm,一昼夜时针扫过的面积是(2π dm2)。

【解析:时针的长就是圆的半径,“一昼夜”指24小时,时针走了24小时就是走了两周。π×1²×2=2π(dm²)】

11、一根水管,第一次截去全长的1/4,第二次截去余下的2/3,两次共截去全长的(3/4)。

【解析:1/4 (1-1/4)×2/3=3/4】

12、某种皮衣价格为1650元,打八折出售可盈利10%。那么若以1650元出售,可盈利(450)元。

【解析:本题关键是要先算出进价,原题中的“10%”是针对进价的。设皮衣的进价为x元。(1 10%)x=1650*80% 解得:x=1200。以1650元出售,可盈利:1650-1200=450(元)】

13、正方形边长增加10%,它的面积增加(21)% 。

【解析:{[1×(1 10%)]2-1}÷1=21%】

二、判断题。

1、某商品先提价5%,后又降阶5%,这件商品的现价与原价相等。(×)

【解析:错。两个5%的单位“1”不一样。1×(1 5%)×(1-5%)=0.9975 值小于1表示现价比原价少,值大于1表示多。】

2、在含盐20%的盐水中加入同样多的盐和水后,盐水的含盐率不变。(×)

【解析:错。用假设法来验证:假设盐是20克,水是80克,则含盐就是20%。如果分别同时加入10克盐和水,那么这时含盐率就是:(20 10)÷(20 10 80 10)×100%=25%,含盐率变大了。】

3、如果甲数比乙数多25%,那么乙数就比甲数少25%。 (×)

【解析:错。两个25%相对的单位1不同。应该是:甲数比乙数多25%,乙数就比甲数少20%。25%÷(1 25%)=20%】

4、半径是2厘米的圆,它的周长和面积相等。(×)

【解析:错。只能说在数值上相等,但是万物都有单位,周长单位是1维的,面积单位是2维的,怎么可能相等呢?简单地说,周长和面积单位不一样,也不可能互化,所以周长和面积不可能相等。】

5、直径相等的两个圆,面积不一定相等。(×)

【解析:错,是一定相等。直径相等就表示半径也会相等,而半径决定了圆的大小,只要圆的半径相等,它们的大小就会相等,即面积也一定相等。】

6、比的前项和后项都乘或除以同一个数,比值大小不变。(×)

【解析:错。0必须除外。0是不能作为除数的。】

三、选择题。

1、数学小组共有20名学生,则男、女人数的比不可能是(A)。

A.5︰1 B.4︰1 C.3︰1 D.1︰1

【解析:A。20的因数有:1、2、4、5、10、20,而5 1=6,6不是20的因数;所以不可能是5:1。】

2、如图,阴影部分的面积相当于甲圆面积的1/6,相当于乙圆面积的1/5,那么乙与甲两个圆的面积比是(C)。

20的所有因数有哪些,(3)

A、6︰1 B、5︰1 C、5︰6 D、6︰5

3、一杯牛奶,牛奶与水的比是1︰4,喝掉一半后,牛奶与水的比是(A)。

A、1︰4 B、1︰2 C、1︰8 D、 无法确定

【解析:A。喝掉一半后,浓度不变,牛奶与水的比还是1:4。验证:(1-1×1/2):(4-4×1/2)=1:4】

4、利息与本金相比(C)

A、利息大于本金 B、利息小于本金 C、利息不一定小于本金

【解析:C。利率表示利息与本金的比率;利息可能小于本金,也可能大于本金;所以利息不一定小于本金。】

四、解决问题。

1、A、B两地相距408km,客车和货车同时从A、B两地相对开出,3小时后相遇,已知客车和货车的速度比是9:8,客车每时比货车每时快多少千米?

解:设客车速度为9x,货车速度为8x,根据题意列方程:

(9x 8x)×3=408

17x*3=408

x=408/51

x=8

所以客车每小时比货车快:9x-8x=x=8(千米)

2、东岗小学组织学生收集树种,五年级收集的树种占总质量的40%,六年级收集的树种占总质量的50%,五年级收集的树种比六年级少20千克。五六年级一共收集树种多少千克?

20÷(50%-40%)=200(千克)

3、一件商品按20%的利润定价,然后又按8折出售,结果亏了64元,这件商品的成本是多少元?

解:设这件商品的成本是 x 元

x - 64=[(1 20%)x] ×80%

x - 64=1.2x × 0.8

x - 64=0.96x

x-0.96x=64

0.04x = 64

x = 64÷0.04

x = 1600

答:这件商品的成本是1600 元。

【说明:8折表示按定价的80%出售。x - 64表示现价,(1 20%)x表示定价,[(1 20%)x] ×80% 表示打8折后的售价,即现价。】

4、将一根384cm的铁丝焊成一个长、宽、高的比是3:2:1的长方体模型。这个模型的长、宽、高各是多少厘米?表面积是多少平方厘米?

先算出一条长、一条宽、一条高的和:

384÷4=96cm;

再计算长宽高各是多少:

长:96÷(3 2 1)×3=48cm

宽:96÷(3 2 1)×2=32cm

高:96÷(3 2 1)×1=16cm;

表面积:

(48×32 48×16 32×16)×2=5632(cm2)

5、一块长方形土地,周长是160m,长和宽的比是5:3,这块长方形土地的面积是多少平方米?

长:160÷2÷(5 3)×5=50m

宽:160÷2÷(5 3)×3=30m

面积:50×30=1500(m2)

6、李明和张华参加赛跑,李明跑到中点时,张华跑了全程的40%,此时两人相距80米,你知道赛程多少米吗?

分析:把整个赛程看作单位“1”,那么80米对应的分率是(50%-40%),根据分数除法的意义,用对应量除以对应的分率即可.

解答:

80÷(50%-40%)

=80÷10%

=800(米)

答:这个赛程长800米。

点评:解答此题的关键是找单位“1”,然后用对应量除以对应的分率解决问题。

*7、看一本书,第一天读的页数与未读页数的比是1:3,第二天看了120页,这时已读的与未读页数的比是2:3,这本书有多少页?

20的所有因数有哪些,(4)

打印方法:发送本文至电脑端,打开链接后按ctrl P调出打印机,显示完整预览后即可打印。

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 m.360kss.com., All Rights Reserved.